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Why Step Functions?

• Asynchronous background processing 
• Own a complex workflow end-to-end 
• Spin up instantly and consume no 
resources while idle 

• Pause/start/stop workflows 
• For me, this is use case #1 for serverless!



Step Functions as a Lambda Orchestrator

AWS Step Functions workflow



Lambda as SDK Proxy?

• Cold Starts 
• Code Ownership 
• Dependencies 
• Runtime Deprecation



Service Integrations and Intrinsics are 
Powerful!

• Direct SDK integrations 
• Array manipulation 
• String operations 
• Math 
• Hash/random strings 
• Encoding/Decoding 
• JSON



Service Integrations and Intrinsics are 
Powerful!

• Fast 
• Cheap 
• No Dependencies 
• Managed Compute (no OOM) 
• Observable



Service Integrations and Intrinsics are Hard!



Service Integrations and Intrinsics are Hard!

Data Flow Simulator



AWS Logs Comptroller

• Set LogGroup Retention if unset 
• Prune “orphaned” Lambda LogGroups 
• Can be scheduled 
• Any scale 
• Log results
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The Sweet Spot

• Highly optimized and scaled-out workflows 
• Distributed constructs 
• Curb any spaghetti tendencies



Tools

• Workflow Studio 
• cdk watch / sam sync 
• functionless.org 

http://functionless.org


Try My Construct!



Thank you 
Connect with me @  

https://mattmorgan.cloud


