
AWS Step Functions: Steep
Curve; Maximum Power

Matt Morgan
AWS Community Builder

https://mattmorgan.cloud

Serverless Devotee

Serverless Devotee

Why Step Functions?

• Asynchronous background processing
• Own a complex workflow end-to-end
• Spin up instantly and consume no
resources while idle

• Pause/start/stop workflows
• For me, this is use case #1 for serverless!

Step Functions as a Lambda Orchestrator

AWS Step Functions workflow

Lambda as SDK Proxy?

• Cold Starts
• Code Ownership
• Dependencies
• Runtime Deprecation

Service Integrations and Intrinsics are
Powerful!

• Direct SDK integrations
• Array manipulation
• String operations
• Math
• Hash/random strings
• Encoding/Decoding
• JSON

Service Integrations and Intrinsics are
Powerful!

• Fast
• Cheap
• No Dependencies
• Managed Compute (no OOM)
• Observable

Service Integrations and Intrinsics are Hard!

Service Integrations and Intrinsics are Hard!

Data Flow Simulator

AWS Logs Comptroller

• Set LogGroup Retention if unset
• Prune “orphaned” Lambda LogGroups
• Can be scheduled
• Any scale
• Log results

AWS Logs Comptroller

AWS Logs Comptroller

SDK Call

SDK Call

SDK Call

Intrinsic

Choice

Intrinsic

Intrinsic

AWS Logs Comptroller

SDK Call

SDK Call

SDK Call

SDK Call

Intrinsic

Intrinsic

Intrinsic

SDK Call

Intrinsic

Intrinsic

Intrinsic

Intrinsic

Choice

Choice

Choice

Choice

Choice

The Sweet Spot

• Highly optimized and scaled-out workflows
• Distributed constructs
• Curb any spaghetti tendencies

Tools

• Workflow Studio
• cdk watch / sam sync
• functionless.org

http://functionless.org

Try My Construct!

Thank you
Connect with me @

https://mattmorgan.cloud

